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A considerable number of papers {1=5] has been devoted to deter-
mining the electrical conduectivity of a partially ionized gas on the
basis of kinetfc theory, In so doing, a three-component plasma model
(electrons, ions, neutrals) is generally employed. The general expres-
sions for the electrical conductivity of a many-component system are
fairly complicated [1], and the calculation of their determinants is
most laboricus.

The case of 2 N-component gas mixture in which one of the com-
ponents is partially ionized (N + 2-component plasma) is considered
below. A series of simplifications in the solution of the initial system
of equations allows one to represent the expressions for the electrical
conductivity of such a mixture in the same form as for the three-com-
ponent plasma case, but with certain effective parameter values. The
results obtained correspond to the "second approximation " of Cowling
11, 61.

As our initial system of equations we use thetrans-
port equations for diffusion velocities w. —u and
for the reduced relative heat fluxes Ty = h,y/p.y given
in {4], Omitting terms with pressure and temperature
gradients and neglecting "viscous" transfer of momen-~
tum and the temperature difference of components (a
similar system was employed in [3] for a three-com-
ponent plasma), we have
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Here m,, €x, M4, Pa = Nam, are, respectively, the
mass, charge, density, and mass density of particles
of type «; p is the mass density of the mixture; u is
the mean mass velocity of the gas; and E and H arethe
electric and magnetic field strengths., Moreover,

hap ~ nanafasQua- (4).

Here p o p is the reduced mass and Qqg is the mean
effective collision cross section for particles of types
« and 8. It is convenient to express the quantity A, B in
terms of the effective collision frequency 7, 3'1

hag = NallapTas™ = MaflagTs: ™" = hsa (5)
Expressions for Ty and the coefficients b, ap
baB, tap for different mteractlon laws are given in
{4. '

Equation (2) is solved for r.. Setting the expres-
sions thus obtained in (1), we arrive at a system of
linear vector equations for the diffusion velocities W

These equations are linearly dependent, and so the
actual number of equations necessary to determine the
current densify

i= Envevwv (6)
L

is less by one than the number of components. In the
solution of the system (1)--(3) below, the equations for
the electronic component (o = e) and N independent
equations (1) for the neutral components (¢ =1, ..., N)
are employed. Thanks to the conditions me/mB «< 1
and béﬁ ~ (me/mﬁ) « 1for B # e we may neglect in
the equations for electrons, terms containing the heat
fluxes of ions and neutrals. Omitting the last term on
the right hand side of (1) for the same reason, and
taking into consideration that peﬁ ~ mg, we have
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In writing (10), the expressions for b g, b&ﬁ given
in {4] were employed. The coefficient B, ﬁ* depends
only slightly on the character of electron scatter and
differs little from unity. For the case of single ioni-
zation, e; = —eg = e and rj = ng. Then

j= ne (wi — we). (11)
Taking into account that

=2 5 (We —w) (12)

Y#e
in view of condition (3), and introducing the quantities
X, = nge r..(13)

Sg = nee (Wi —wWp) (B=:1,....N)

we represent equations (7), (8) in the form
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To determine SB we have N independent equations
(1) fora=1,2,,..,N, Here, as in the equations for
electrons, we neglect terms containing the heat fluxes
of ions and neutrals. The latter procedure may be
justified as follows. The expressions for rj and rg
(8=1,2,...,N), resulting from the solution of equa~
tions (2), contain terms proportional to Sg only, since
Te and j appear in them with coefficients ~ me/mﬁ.
Moreover, the proportionality coefficients tig and ¢q B
depend on ion-atom and atom-atom interactions only,
and so for real interaction potentials ¢ig ~ tap = 0.2.
Setting rj and rg in (1), we note that the additions to
the coefficients for Sg turn out to be quadratic with
respect to the quantities ¢ip and taps i.e., taking into
account the heat fluxes of ions and neutrals introduces
only insignificant corrections., (Estimates for a three-
component plasma [3, 4] show that neglecting r; and r,,
leads to an error not exceeding 2% in the final result.)
Then, taking into account that e, = 0 fora =1,2,...
..., N, we may represent Eqs. (1) for the neutral
components in the form

Z 0upSp = hea (= LeaXo) + me 5 (5 X HY, (1)
B=1
Aaa = Zl hav  (Ye=e i1, ... N), (18)
REald
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Solving the equations, we have

Se = caj — duXe + fa (j X k), (19)

Z aia| Ceﬁvea, (20)

N

o Pglal
fa = NeMee Z—B ]aBl“.

Bmlp

Here la| is the determinant of the system and lalgy
is the cofactor of the element S of the determinant,

We note that the nondiagonal elements of the deter-
minant depend on quantities which characterize atom-
atom interactions only. The diagonal terms contain,
together with other elements, the quantities Aqy and
M. In this case, Aea/Ma ~ m?/ i if Qeq ~
~ Qjqs and 80 Agy < Aj. Assuming that the cross
sections Qqg for atom-atom interactions have the
same order of magnitude as Qjy, and estimating the
coefficients in (19) under these conditions, we have

d, < ¢a,

Ca g (me / mh‘)llzv fl % (me / ’nk)‘/z (l?eTo.

Here the index k refers to the lightest neutral com-
ponent in the mixture. Setting (19) in equations (14),

(15) and solving them jointly, we arrive at the equation
are neglected as-

for j, which when terms ~(mg/my)
sumes the form

Aj + Boeto (j X k) — Colt2 k (Jk) = s E.  (21)
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Equation (21) is the generalized Ohm's law for the
multicomponent mixture under cons1derat10n. Solving
it for j, we have

j=0E)" +5.E)' +ou(k X E) (24)

where E;' = k(Ek)and E,” = k x (E' x k)are the com-
ponents of E’ corresponding to the parallel and per-
pendicular magnetic fields, and s, s and s, are the
longitudinal, transverse and "Hall" conductivities
given by the expressions
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The structure of the expressions for the electrical
conductivities (25) remains the same in fact as in the
case of a three-component plasma [3, 4]. The pres-

-ence of several types of neutrals in the mixture leads

only to an additional contribution to the coefficients
76", (1e*)~!and v, taking into account the interaction
of the electrons with neutrals of each type.

The generalized expression for the coefficient ¢, is
also important. We note that it is precisely the term
60we27'02 which describes the influence of the relative
diffusion of heavy components (ions and neutrals) on .
the electrical conductivity across the magnetic field.
If 8ywe’Ty? « 1, then the multicomponent plasma under
consideration is described, with a good degree of ap-
proximation, by the model of a quasi~two-component
medium [7]. The expressions for the electrical con~
ductivity of such a plasma (25) then follow immedi-
ately from the solution of the equations for the elec~
tronic component (7) and (8), if we set wg=0 in them,
i.e., if we consider the velocities of the heavy com-
ponents ug approximately equal to the mean mass ve-
locity of the gas u. We now give the expressions for
8, for the cases when one and two types of neutrals
are present in the mixture:

for a three-component plasma

b = mamery (871 — ()" (1) R 55 oy

for a plasma with two types of neutrals

Mgy + PRy, - (pr £ P2)? A2

p? highis + bz (hyy = hig) (@7)

If the relative concentration of charged particles in
the mixture is not large (nj <« n; + n,), the latter ex-
pression may be simplified:

me‘/z (nlf)el + ne ng Sy O»i)

& = By fimQy + pytaneQy, (28)
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A typical example in which the results obtained above may find
application, is the calculation of the electrical conductivity of mix-
tures with a lightly ionized additive, such as are employed in a series
of magnetohydrodynamic devices. In estimating the influence of ion
slip on the electrical conductivity of such mixtures the use of expres-
sions (27) or {28) is more exact than expressions of the type (26).

We shall now estimate the role of "second-order" corrections to
the theory, Clearly, their influence on the transverse and "Hall" con-
ductivities notably decreases as the parameter wez'roz increases. Thus,
if taking ion slip intc account is important, i.e., 6oweg'roz ~ 1, then
wez‘rgz > 1 since 8, <« 1, Under these conditions the contribution of
"second-order” corrections turns out to be vanishingly small. For
cases when weTy <1, and also in calculating the longitudinal conduc-
tivitye, , it is essential to take into account the corrections Ay. We
shall examine the calculation of & in greater detail.

In the limit of a weakly ionized gas when only the interactions of
electrons with neutrals are important, we may represent the expres-
sion for the effective collision frequency Ty ! in the form

ol = % 7, 3 Qs v, = (8"T ) h (29)
B

TURB

Qup= x #3exp (— %) g5 (v, %) (1 — cos y) dQdz, (39)
where g,, (v, ¥) is the effective differential cross section of elastic
scattering of electrons by 8-type neutrals, X is the scattering angle,
dQ = sin x dxde (¢ is the azimuthal angle), x% = (mg /2KTYV?%, and v
is the electron velocity,

We have for "second-order™ corrections

AZ = (%] ZepnaQep)” / (Z nYQeY§(1—O.—iSBeG”")nBQeB ) (31)

If q (v, x) = const, which corresponds to the model of interaction
of hard elastic spheres, then Qeﬁ = 0.2, B:g =1 and AJ"= 0.077.In
this case the expression for the conductivity o, assumes the form

2

B en, _
se”"=0.a10 WE),—/; <§ nBQeB) . (32)

This resuit differs by only 4% from the exact Lorentz value o of
the interaction for this model (0.510 instead of 0,532 [6]). If the in-
teraction of electrons with neutrals of different types is varied in char-
acter, then, generally speaking, as? depends on the relative concen-
tration of neutral components in the mixture. However, it must be
noted that as a rule this correction is itself small. The contribution to
Ay in the other limiting case, when the gas is fully ionized, turns out
to be more important. For this case {; = — 0.6, B,;* = 1 and Aﬁi =
= 0,482, Using the expressions

{ 2nkT )‘h( e?

4 2 v -
=g ) A, T, tm Vi, (33)
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GT =0.582 —Zf,:)‘/z ﬁ, (34)
4
which practically coincides with the well~known result of Spitzer
(0.582 instead of 0,591 [8]).

We shall now consider the case of an arbitrary degree of ioniza-
tion of the mixture, Different interpolations are proposed in order to
calculate the conductivity in this region, all of which are based cn
the assumption that the specific resistances due to electron-neutraf
and electron-ion collisions [9] are additive. If we leave aside the
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small differences in numerical coefficients for the limiting cases
mentioned above, then the most often used expression for ¢, may be
represented in the form

1 1 1
i B 35)

- et
Sy Sy

where oe”" and 0% are determined from expressions (32) and (34).
Actually, as follows from (16), only the effective collision frequen-
cies Té?a or specific resistances calculated only in first-approximation
theory are additive. Hence a more accurate expression for o is

. 1— A 1 1—48,

en en o ci
|5y 1 — A 5% A — Ay

1 1
5 (36)

Comparison of {35) and (36) allows us to estimate the error in-
volved in calculating the conductivity from the approximate formula
(85). Both expressions give values of ¢, which coincide in the limit-
ing cases but may differ noticeably for effective electron-neutral and
electron-ion collision frequencies which are comparable in magnitude.
As a rule, Ay < 1 in this region and the coefficient for the first term
in (36) is of the order of two; thus, calculations from the approximate
formula (35) may give values of ¢ 1.3~1.5 times higher than the
more exact values of (36).
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